Ans 2) O'A+O'B+O'C3 = O'G = 23 O' O [centroid of triangle and section formula]
Therefore, O'A+O'B+O'C=2O'O
Ans 3) Is ques 3 right ??? plzz check again.
in ΔABC,O,N,G,O' are circumcentre,nine point centre,centroid and orthocentre .AL and BM are perpendiculars from A nad B on sides BC and CA.Let AD be the median and OD is perpenndicular to side BC and R be circumradius of ΔABC,then OA=OB=OC=R.Also given that AO'=2OD .
Q1 Prove OA+OB+OC=OO'
Q2 Prove O'A+O'B+O'C=2O'O
Q3 Prove AO'+O'B+O'C=12OO'
Ans 2) O'A+O'B+O'C3 = O'G = 23 O' O [centroid of triangle and section formula]
Therefore, O'A+O'B+O'C=2O'O
Ans 3) Is ques 3 right ??? plzz check again.