Vectors and 3-D Geometry

Question 1
If \vec{a},\vec{b},\vec{c} be such that |\vec{a} + \vec{b} + \vec{c}|=1, \vec{c} = \lambda\vec{a} x \vec{b} and |a|=12, |b|=13, |c|=16 then the angle between \vec{a} and \vec{b} is:

A)Î 6
B)Î 4
C)Î 3
D)Î 2

Question 2
Consider the plane (x,y,z)=(0,1,1)+λ(1,-1,1)+m(2,-1,0). The distance of this plane from the origin is

A)13
B)32
C)32
D)23


Answers:
Q1>D)
Q2>C)

6 Answers

39
Pritish Chakraborty ·

In Q1, vector c is in a plane perpendicular to both a and b. So conveniently a.c = b.c = 0.

|\vec{a} + \vec{b} + \vec{c}|^2 = 1

=> |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{a}.\vec{c})

=> \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + 2(\vec{a}.\vec{b} + 0 + 0)

=> 1 + 2\vec{a}.\vec{b} = 1

=> \vec{a}.\vec{b} = 0

But
|\vec{a}| \neq |\vec{b}| \neq 0

So

cos\theta = 0

This implies theta is a multiple of pi/2.
So D.

1
Smriti Kumari ·

In Q2.
ans. c)

1
Tapas Gandhi ·

q1> right thx pritish
q2>@smriti: right but cud u elaborate as to how u read the LC of vectors

1
Smriti Kumari ·

the plane passes thru (0,1,1) and the lines with dc's (1,-1,1) & (2,-1,0)
lie in the plane.

39
Pritish Chakraborty ·

Solve the determinant(which is equal to zero) :
|x-0 y-1 z-1 |
|1 -1 1 |
|2 -1 0 |

First row of determinant is x-x1, y-y1, z-z1 or the point which satisfies the plane. Next two rows are the position vectors/direction ratios of the lines.

x(+1) - (y-1)(-2) + (z-1)(1) = 0
=> x + 2y - 2 + z - 1 = 0
=> x + 2y + z -3 = 0

Distance of origin from plane is given by :

\frac{|0 + 0 + 0 -3|}{\sqrt{1 + 4 + 1}} = \frac{3}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{2}}

1
Tapas Gandhi ·

thx pritish, smriti

Your Answer

Close [X]