A question on AP.

If sec(x-y), secx , sec(x+y) are in AP, then (cosx)(secy2)=
a)±√3
b)±√5
c)±√7
d)±√2

Plz show the steps for this prob also..

4 Answers

1
Abhisek ·

sec(x-y) secx sec(x+y) → AP
1cos(x-y) 1cos x 1cos(x+y) →AP

Therefore,

2cos x = 1cos(x-y) + 1cos(x+y)

2cos x = 2.cos x.cos ycos(x-y).cos(x+y)

1cos x = 2.cos x.cos ycos2x-sin2y

cos2x-sin2y = cos2x.cosy

cos2x (1 - cos y) = sin2y

cos2x (1 - cos y) = (1 - cos2y)

cos2x = 1 + cos y

cos2x - cos y = 1

Since maximum value of cos2x is (+1)
or cos y = ±1................................(1)
Therefore, cos y = 0 in order to fulfill the above equation.

cos y = 0

y= π2

y2 = π4

cos y2 = cosπ4 = 12

secy2 = √2.....................................(2)

Multiplying (1) and (2), we get
cos y . sec y2 = ±1 x √2 = ±√2 [ Option (d) ]

1
Avinav Prakash ·

TO CUT IT SHORT
cos2x = 1 + cos y=2cos2y/2
from here directly get the answeer

1
Abhisek ·

Yup. !

1
chessenthus ·

Thank you very much for the quick reply!

Your Answer

Close [X]