TO CUT IT SHORT
cos2x = 1 + cos y=2cos2y/2
from here directly get the answeer
If sec(x-y), secx , sec(x+y) are in AP, then (cosx)(secy2)=
a)±√3
b)±√5
c)±√7
d)±√2
Plz show the steps for this prob also..
-
UP 0 DOWN 0 0 4
4 Answers
sec(x-y) secx sec(x+y) → AP
1cos(x-y) 1cos x 1cos(x+y) →AP
Therefore,
2cos x = 1cos(x-y) + 1cos(x+y)
2cos x = 2.cos x.cos ycos(x-y).cos(x+y)
1cos x = 2.cos x.cos ycos2x-sin2y
cos2x-sin2y = cos2x.cosy
cos2x (1 - cos y) = sin2y
cos2x (1 - cos y) = (1 - cos2y)
cos2x = 1 + cos y
cos2x - cos y = 1
Since maximum value of cos2x is (+1)
or cos y = ±1................................(1)
Therefore, cos y = 0 in order to fulfill the above equation.
cos y = 0
y= π2
y2 = π4
cos y2 = cosÏ€4 = 1√2
secy2 = √2.....................................(2)
Multiplying (1) and (2), we get
cos y . sec y2 = ±1 x √2 = ±√2 [ Option (d) ]