algebra ques.. no clues...

Q1. For what values of d is the product of two numbers of the form x2-dy2 and u2-dv2 is also of the same form (d is not a perfect square)

Q2. How many solutions does the equation
xax = axa, 0<a<1 have in positive real nos.?

Q3. Let x,y,z satisfy
\frac{x^2}{2^2-1^2}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1
\frac{x^2}{4^2-1^2}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1
\frac{x^2}{6^2-1^2}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1
\frac{x^2}{8^2-1^2}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1

then find the value of x2+y2+z2+w2

Q3. For how many values of a are a, a+4, a+14 primes?

Q4. Consider the numbers A=4125+1254 and B = 4245+2454. Then A and B are primes or composites ??

Q5. Find the value to which \sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4-\sqrt{4+...}}}}} converges

Q6. The value of 1^2C_{1} + 2^{2}C_{2}+3^2C_{3}+...+n^2C_{n} is

Q7. If a=\sum_{r=0}^{n}{\frac{r}{^{n}C_{r}}} then find the value of \sum_{r=0}^{n}{\frac{1}{^{n}C_{r}}} in terms of a and n

Q8. For a positive number n, let Sn denote the sum of the digits of n. The number of integers for which n-Sn = 1234 equals?

18 Answers

62
Lokesh Verma ·

Q3. For how many values of a are a, a+4, a+14 primes?

Hint: think of divisibility by 3

a gives a remainder r,

then a+4 gives a remainder r+1 and a+14 gives a remainder r+2

so the only possibility fo these three numbers being prime is when a=2 or 3

a=2 will not be possible. so the answer is for a=3

106
Asish Mahapatra ·

haan 36

1
Che ·

primes wala nahin bhai........uskey upar wala

1
Che ·

wer i din find????

106
Asish Mahapatra ·

3rd one is answerd#11 ...

1
Che ·

is teh ans 36 for 3rd one

1708
man111 singh ·

(5) Yes Nishant Sir You are saying Right.

x =\sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4...........}}}}
and put 4=a
then equation become
x=\sqrt{a+\sqrt{a-x}}
square both side
(x^{2}-a)^{2}=(a-x)

x^{4}+a^{2}-2ax^{2}=a-x
x^{4}-2ax^{2}+x+a^{2}-a=0
now this is a biquadratic in x but quadratic in a
so solve for a
a^{2}-a(2x^{2}+1)+x^{4}-x=0
2a-(2x^{2}+1)=\pm (2x+1)
and put a=4 in this equation and solve for x.........

11
Devil ·

8) No solutions.....FOT QSN.
Think of dividing both sides by 3.
Number 2 was once done in an AOPS MATH-JAM.....

And if i remember the Pell's EQN properly, I'd rather think of applying it for the 1st one....

Number 4 was an old GOIIT QSN.....I rememebred abt the lost legacy of goiit after seeing that qsn.

1
b_k_dubey ·

4.

A = (2125)2 + (1252)2 + 2(2125)(1252) - 2(2125)(1252)

A = (2125 + 1252)2 - (263 125)2

A = (2125 + 1252 + 263 125)(2125 + 1252 - 263 125)

24
eureka123 ·

ans 6 =n(n+1)2n-2

62
Lokesh Verma ·

Q7. If a=\sum_{r=0}^{n}{\frac{r}{^{n}C_{r}}} then find the value of in terms of a and n \sum_{r=0}^{n}{\frac{1}{^{n}C_{r}}}

Keep in mind: \sum_{r=a}^{b}{f(r)}=\sum_{r=a}^{b}{f(a+b-r)}

Hence a=\sum_{r=0}^{n}{\frac{r}{^{n}C_{r}}} = \sum_{r=0}^{n}{\frac{n-r}{^{n}C_{n-r}}} = \sum_{r=0}^{n}{\frac{n-r}{^{n}C_{r}}}

adding the first with the last result, we get

\\a=\sum_{r=0}^{n}{\frac{r}{^{n}C_{r}}} = \sum_{r=0}^{n}{\frac{n-r}{^{n}C_{n-r}}} \\a= \sum_{r=0}^{n}{\frac{n-r}{^{n}C_{r}}} \\ Thus, \\ 2a=\sum_{r=0}^{n}{\frac{n-r+r}{^{n}C_{r}}} \\2a=\sum_{r=0}^{n}{\frac{n}{^{n}C_{r}}} \\\sum_{r=0}^{n}{\frac{1}{^{n}C_{r}}}= 2a/n

62
Lokesh Verma ·

x=\sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4-\sqrt{4+...}}}}}

y=\sqrt{4-\sqrt{4+\sqrt{4-\sqrt{4+...}}}}

so we have x=√4+y

while y=√4-x

I remember a question on this one where we had 7 instead of 4 and the observation that y=2 and x=3 worked well there.....

But does not seem to work here....

Solving the biquadratic to get the answer would not be a very prudent thing.. (i guess!)

21
eragon24 _Retired ·

Q2.....

take loga both sides

tat will yield axlogax=xa
consider functions from R+→R
f(x)=ax

g(x)=logax

h(x)=xa

then both functions f and g are decreasing and h is increasing

it follows that f(x)g(x)=h(x) has a unique soln at x=a

btw from wer u got des ones from.............

24
eureka123 ·

arre nahin..maine to solve bhi nahin kiya tha..subah se bino hi akr raha thaa...yaad ho gaye the answers:P

106
Asish Mahapatra ·

kk .. thanks got it ..

main kahaan poora solution maangta hoon .. ? just hints are enuf (most of the time)

24
eureka123 ·

(1+x)^n=C_0+C_1x+C_2x^2+...C_nx^n

diff it n(1+x)^{n-1}=C_1+2C_2x+...+nC_nx^{n-1}

multiply by x nx(1+x)^{n-1}=C_1x+2C_2x^2+...+nC_nx^{n}
diff again
RHS will be C_1+2^2C_2x+...+n^2C_nx^{n-1}

lhs thoda lamba hai isliye type nahin kiya..

ab x=1 aur ans

24
eureka123 ·

solve kahan kiya abhi....yaad hi thaa...

post karte hain

106
Asish Mahapatra ·

arey bhai solution toh do ... yeah ans is correct

Your Answer

Close [X]