Answer NOT matching

Just to be sure, can someone give a solution to these:-

x=\sum_{n=0}^{\propto}{cos^{2n}\phi}

y=\sum_{n=0}^{\propto}{sin^{2n}\phi}

z=\sum_{n=0}^{\propto}{sin^{2n}\phi cos^{2n}\phi}

Then find the relation(s) between x, y and z.

Edit: 0<\phi <\frac{\pi }{2}

7 Answers

1
Unicorn--- Extinct!! ·

Q2)
S_{n}=\sum_{n=2}^{\propto}\frac{1}{n^{2}-1}

Find S_{n}

1
mentor_Pritam ·

Ans to Q1) z(xy - 1) = xy

1
b_k_dubey ·

1) xyz = xy + z

2) S = 3/4

1
mentor_Pritam ·

Q1) x=cosec2φ, y=sec2φ,z=1/(1-sin2φ.cos2φ)
so, z=xy/(xy-1)

1
Che ·

S=\frac{1}{2}\sum_{r=2}^{\infty }{\frac{2}{r^{2}-1}}=\frac{1}{2}\sum_{r=2}^{\infty }{\frac{(1+r)-(r-1)}{r^{2}-1}}= \frac{1}{2}\sum_{r=2}^{\infty }{\frac{(1+r)-(r-1)}{(r+1)(r-1)}}=

=12(Σ∞r=2 (1r-1- 1r+1)

=12(1+12)=3/4

1708
man111 singh ·

(1)
here x=\frac{1}{1-cos^{2}\theta }= \frac{1}{sin^{2}\theta }
sosin^{2}\theta =\frac{1}{x} .........(1)
similarly cos^{2}\theta =\frac{1}{y}.....(2)
and z=\frac{1}{1-sin^{2}\theta cos^{2}\theta }.....(3)
put value of sin^{2}\theta and cos^{2}\theta from equation (1) and (2) we get
xyz=xy+z.....(4)
but from adding equation (1) and (2)
we get sin^{2}\theta +cos^{2}\theta =1
\frac{1}{x}+\frac{1}{y}=1 or xy=x+y
replacing xy=x+y in equation ..(4) we get
xyz=x+y+z

1
Unicorn--- Extinct!! ·

Thanx all!!!!

Answer to Q1) is given xyz= xy+z and xyz= x+yz
Answer to Q2) is given 4/3

BUt i'm pretty sure they are wrong..so thankuu.

Your Answer

Close [X]