ap

if the sum f an A.P is same for p and q terms, show that the sum of p+q terms is 0........

S(p+q) >0 from graph ...how can it be 0 ?????
and if S(p+q)=0 wat is the other root

1 Answers

23
qwerty ·

S_{p} = \frac{p}{2}( 2a + [p -1]d )

S_{q} = \frac{q}{2}( 2a + [q -1]d )

S_{q} = S_{p}

q( 2a+[q-1]d) = p(2a+[p-1]d)

2a(q-p)= d(p^{2}-p-(q^{2}-q))

2a(q-p)- d(p^{2}-q^{2}-(p-q)) = 0

2a(q-p)- d((p-q)(p+q)-(p-q)) = 0

2a(q-p)+ d((q-p)(p+q)-(q-p)) = 0

2a(p+q-1)d=0

\frac{(p+q)}{2}(2a+(p+q-1)d) = 0=S_{p+q}

Your Answer

Close [X]