thanks sir[1]
Prove that \frac {C_0}{n}- \frac {C_1}{n+1}+ \frac {C_2}{n+2} -......+(-1)^n\frac {C_n}{2n}=\frac {(n!)(n-1)!}{(2n)!}
-
UP 0 DOWN 0 0 2
Prove that \frac {C_0}{n}- \frac {C_1}{n+1}+ \frac {C_2}{n+2} -......+(-1)^n\frac {C_n}{2n}=\frac {(n!)(n-1)!}{(2n)!}