Binomial Expansion

If a0, a1, a2,... are the coefficients in the order of expression of (1+x+x2)n, prove that

a02-a12+a22-.....+(-1)n-1an-12=(1/2)an(1-(-1)nan)

3 Answers

1357
Manish Shankar ·

No one for this

1357
Manish Shankar ·

try this
hint is

a0=a2n

a1=a2n-1

2305
Shaswata Roy ·

If we put x=1x we get,

\frac{(x^{2}+x+1)^{n}}{x^{2n}}=\frac{a_{0}x^{2n}+a_{1}x+\dots +a_{2n}}{x^{2n}}

However on expanding just the numerator we get that it is also equal to-

\frac{a_{0}+a_{1}x+\dots +a_{n}x^{2n}}{x^{2n}}

Therefore,
a0 = a2n
a1 = a2n-1

Or in general,
ar = a2n-r.......(i)

Given:
(1+x+x^{2})^{n}=a_{0}+a_{1}x+\dots +a_{2n}x^{2n}\dots (ii)

Put x= -x,
(1-x+x^{2})^{n}=a_{0}-a_{1}x+\dots +a_{2n}x^{2n}\\=a_{0}x^{2n}-a_{1}x^{2n-1}\dots +a_{2n}\text{(from i)}\dots (iii)

Put x = x2,

(1+x^{2}+x^{4})^{n}=a_{0}+a_{1}x^{2}+\dots +a_{2n}x^{4n}\dots (iv)

Coefficient of x2n in (iv) is = an

Multiplying (ii) and (iii),

(1-x+x^{2})^{n}\times (1+x+x^{2})^{n}=(1+x^{2}+x^{4})^{n}\\(a_{0}+a_{1}x+\dots +a_{2n}x^{2n})\times (a_{0}x^{2n}-a_{1}x^{2n-1}\dots +a_{2n})

Coeeficient of x2n in the RHS is,

a_{0}^{2}-a_{1}^{2}\dots +a_{2n}^{2}

We find from (iv) that this is equal to an

Again using the fact that ar=an-r we may find,

a_{0}^{2}-a_{1}^{2}+\dots +(-1)^{n-1}a_{n-1}=\frac{1}{2}(a_{0}^{2}+a_{2n}^{2}-a_{1}^{2}-a_{2n-1}\dots +(-1)a_{n}^{2})\\=\frac{1}{2}(a_{n}+(-1)^{n}a_{n}^{2})

Your Answer

Close [X]