simply.....the product of the roots of a polynomial is equal to constant termco-efficient of highest power of x
\hspace{-16}$If $\bf{r_{1}\;,r_{2}\;,r_{3}\;,r_{4}}$ are the roots of the equation $\bf{4x^4-ax^3+bx^2-cx+5=0}$\\\\\\ Where $\bf{r_{1}\;,r_{2}\;,r_{3}\;,r_{4}>0}$ and satisfy $\bf{\frac{r_1}{2} + \frac{r_2}{4} + \frac{r_3}{5} + \frac{r_4}{8} = 1}$\\\\\\ Then find value of $\bf{r_{1}\;,r_{2}\;,r_{3}\;,r_{4}}$
-
UP 0 DOWN 0 0 6
6 Answers
Ketan Chandak
·2012-05-01 01:34:07
rishabh
·2012-05-01 03:31:27
@aditya it is rishabh ! :P
@ketan he asked for roots not product of roots :P