|z+1-i| = |z +2 -3i | = |z+1+3i| =|z+1+3i|
hence for min. Modulus, z is midpoint of (-1+i) and (-1-3i) , z= -1-i
min. value =|z| =√2
\hspace{-16}$If $\mathbf{\mid z+1-i\mid=\mid \bar{z}+2-3i\mid}.$ Then Find Complex no. $\mathbf{z}$\\\\ with Min. Modulus. and also find Min. Value.
|z+1-i| = |z +2 -3i | = |z+1+3i| =|z+1+3i|
hence for min. Modulus, z is midpoint of (-1+i) and (-1-3i) , z= -1-i
min. value =|z| =√2