Complex Numbers

if α, β, γ, δ are four complex numbers such that γ/δ is real and αδ - βγ ≠0, then z = (α+βt)/(γ+δt), tεR represents a
a) circle
b)parabola
c)ellipse
d) straight line
e) hyperbola.
Please answer this question....

2 Answers

1
dimensions (dimentime) ·

now,

let γ/δ = k (real)

so

Z={1/(k+t)} ((α/δ)+t(β/δ))

Z = {1/(k+t)} (k(α/γ)+t(β/δ))

now ,

let α/γ = z1 & β/δ = z2

it is given that z1 ≠z2

Z = {1/(k+t)} (kz1+tz2)

Z = {1/(k+t)} ((k+t)z1+t(z2-z1))

Z = z1+{t/(k+t)}(z2-z1)

let λ = t/(k+t) (real)

Z = z1+λ(z2-z1)

now this represents an equation of a straight line passing through z1 & parallel to (z2-z1)

<<<<<<<<<<<dimensions>>>>>>>>>>

3
msp ·

dimensions thnx da

Your Answer

Close [X]