now,
let γ/δ = k (real)
so
Z={1/(k+t)} ((α/δ)+t(β/δ))
Z = {1/(k+t)} (k(α/γ)+t(β/δ))
now ,
let α/γ = z1 & β/δ = z2
it is given that z1 ≠z2
Z = {1/(k+t)} (kz1+tz2)
Z = {1/(k+t)} ((k+t)z1+t(z2-z1))
Z = z1+{t/(k+t)}(z2-z1)
let λ = t/(k+t) (real)
Z = z1+λ(z2-z1)
now this represents an equation of a straight line passing through z1 & parallel to (z2-z1)
<<<<<<<<<<<dimensions>>>>>>>>>>