haan ji A =B=1
:D
32 Answers
{\color{red}Given \ z=\frac{\sqrt3+i}{2}}
\Longrightarrow z=cos(\frac{\pi}{6})+isin(\frac{\pi}{6}) \\ z^{102}=cos(\frac{102\pi}{6})+isin(\frac{102\pi}{6}) \\ z^{102}=-1 \Longrightarrow z^{101}=\frac{-1}{z} \\ \text{Subsitute in the given expression} \\ (\frac{-1}{z}-i)^{105} \\ \\ \text{Take minus common} \\ \Longrightarrow (-1) (\frac{1+zi}{z})^{105} \\ \text{Substitute the value of z,After simplification,we will get} \ (-1)z^{105} \\ \Longrightarrow (-1)z^{102}z^{3} \\ \Longrightarrow z^3
aacha koi ni try d way i id may b m makin sum cal mistake
z=(i+√3 )/2 zi= w^2..............
.. (or w.........m confused :( )
so then (z101 +i103 )105
isse solve karo
12] \large z=\frac{\sqrt{3}+i}{2}
\large \left(z^{101}+i^{103} \right)^{105}=?
a]z
b]z2
c]z3
d]z4
1+ω+ω2=0 therefore ge =(-ω2)7
=-ω14 =-ω2
=1+ω=A+Bω
i was able to olve till that..wt after that????
integration definite hai.........i mean she'z correct...............shall i post whole solution???????
for 1t Q
Hey Matie, inte : PL. see c this :
http://targetiit.com/iit_jee_forum/posts/sum1_pl_explain_this_2me_3321.html
hey sorry re doin
i wrte 21 on ma paper n took taht as 4 woh 4 ki atrh dikh ra tha
2] if ω is a complex cube root of unity, and
\large \left(1+\omega \right)^{7}=A+B\omega
then A and B are respectively --------------