Complex numbers

If 'a' is a complex number such that |a|=1.Find the values of a,so that equation az2+z+1=0 has one purely imaginary root.

2 Answers

2305
Shaswata Roy ·

Let

a=x+iy,z = mi

Substitute these values in the equation.

(-xm^2+1)+i(-m^2y+m)=0

\rightarrow x=y^2

|a|=1
\rightarrow x^2+y^2=1
\rightarrow x^2+x-1=0
\rightarrow x=\frac{-1\pm \sqrt{5}}{2}

x>0 since y has to be real.

x=\frac{\sqrt{5}-1}{2}\qquad y=\sqrt{\frac{\sqrt{5}-1}{2}}

341
Hari Shankar ·

http://goiit.com/posts/list/algebra-help-needed-in-a-question-of-complex-numbers-1199242.htm

Your Answer

Close [X]