cubic equation

\hspace{-16}$If $\mathbf{f(x)=x^3+x^2-4x+1}$ and If $\mathbf{\alpha}$ be a root of $\mathbf{f(x)=0}.\;$ Then Prove\\\\ that $\mathbf{\alpha^2+\alpha-3}$ is also root of $\mathbf{f(x)=0}$

3 Answers

21
Shubhodip ·

factor f(a^2 + a - 3)..work backwords by assuming that f(a)|f(a^2+ a - 3)

341
Hari Shankar ·

a3f(a2+a-3) = (a3+a2-3a)3+a(a3+a2-3a)2-4a2(a3+a2-3a)+a3

Now if a3+a2-4a+1=0, then a3+a2-3a = a-1

Hence the given expression simplifies to

(a-1)3+a(a-1)2-4a2(a-1)+a3=-(a3+a2-4a+1)=0

Edit: we have to note that a≠0

1708
man111 singh ·

Thanks hsbhatt Sir for Very Nice approach

also thanks to Shubhodip for Hint

Your Answer

Close [X]