Determinants

q1 Let an=5n+7n and \Delta =\begin{vmatrix} a_{n+1} &a_{n+2} &a_{n+3} \\ a_{n+4} &a_{n+5} &a_{n+6} \\ a_{n+7} & a_{n+8} & a_{n+9} \end{vmatrix}
then Δ= ?

q2 Let \ f_k(x)=\int_{0}^{x}{(a_kt^2+b_kt+c_k)dt} \ for \ 1\leq k \leq 3 and F(x) =\begin{vmatrix} f_1'(x) &f_2'(x) &f_3'(x) \\ f_1''(x) &f_2''(x) &f_3''(x) \\ f_1'''(x) &f_2'''(x) & f_3'''(x) \end{vmatrix}
The curve y=F(x) is ?

2 Answers

1
Manmay kumar Mohanty ·

Q1) \begin{vmatrix} 5^{n}5+7^{n}7 & 5^{n}5^{2}+7^{n}7^{2} &5^{n}5^{3}+7^{n}7^{3} \\ 5^{n}5^{4}+7^{n}7^{4}& 5^{n}5^{5}+7^{n}7^{5} & 5^{n}5^{6}+7^{n}7^{6}\\ 5^{n}5^{7}+7^{n}7^{7}& 5^{n}5^{8}+7^{n}7^{8} & 5^{n}5^{9}+7^{n}7^{9} \end{vmatrix}

first split first column then 2nd then 3rd and take common suitable term.
columns will be identical and sum adds upto 0

2) f_{k}(x) = \frac{a_{k}x^{3}}{3}+b_{k}\frac{x^{2}}{2}+c_{k}x\Rightarrow f_{k}'(x) = a_{k}x^{2}+b_{k}x+c_{k}

follow similar way of expanding columns and taking common.
i thnk this one also adds upto to give 0

for expanding follow \begin{vmatrix} a+x & b & c\\ d+y& e& f\\ g+z&h & i \end{vmatrix} = \begin{vmatrix} a & b & c\\ d& e& f\\ g&h & i \end{vmatrix}+\begin{vmatrix} x & b & c\\ y& e& f\\ z&h & i \end{vmatrix}

1
nikunj ·

Thank you [125]

Your Answer

Close [X]