\hspace{-16}$Given $\bf{1+\frac{1+2}{1!}+\frac{1+2+3}{2!}+\frac{1+2+3+4}{3!}+...........\infty}$\\\\\\ The given series can be written as $\bf{=\frac{1}{2}\sum_{r=1}^{\infty}\frac{r.(r+1)}{(r-1)!}}$\\\\\\ $\bf{=\frac{1}{2}\sum_{r=1}^{\infty}\frac{r^2+r}{(r-1)!} = \frac{1}{2}\sum_{r=1}^{\infty}\frac{(r^2-1)+(r-1)+2}{(r-1)!}}$\\\\\\ $\bf{=\frac{1}{2}\sum_{r=1}^{\infty}\frac{(r+1)}{(r-2)!}+\frac{1}{2}\sum_{r=1}^{\infty}\frac{1}{(r-2)!}+\sum_{r=1}^{\infty}\frac{1}{(r-1)!}}$\\\\\\ $\bf{=\frac{1}{2}\sum_{r=1}^{\infty}\frac{(r-2)+3}{(r-2)!}+\frac{1}{2}\sum_{r=1}^{\infty}\frac{1}{(r-2)!}+\sum_{r=1}^{\infty}\frac{1}{(r-1)!}}$\\\\\\ $\bf{=\frac{1}{2}\sum_{r=1}^{\infty}\frac{1}{(r-3)!}+\frac{3}{2}\sum_{r=1}^{\infty}\frac{1}{(r-2)!}+\frac{1}{2}\sum_{r=1}^{\infty}\frac{1}{(r-2)!}+\sum_{r=1}^{\infty}\frac{1}{(r-1)!}}$\\\\\\ Now using the formula.....\\\\\\ $\bf{\sum_{r=0}^{\infty}\frac{1}{r!}=e}$\\\\\\ So sum $\bf{=\frac{1}{2}e+\frac{3}{2}e+\frac{1}{2}e+e = 2e+\frac{3}{2}e = \frac{7}{2}e}$
1 + 1+21! + 1+2+32! + 1+2+3+43! + ..... ∞ =
(a) 0
(b) 1
(c) 7e2
(d) 2e
Brahmastra - Exponential and logarithmic series Q No.5
-
UP 0 DOWN 0 2 2
2 Answers
man111 singh
·2014-04-18 23:04:49
Himanshu Giria
·2014-04-19 02:19:29
but how can 1/(r-2)! b defined wen r starts from 1
- Akshay Ginodia We take them to be zeroUpvote·0· Reply ·2014-04-27 09:07:15