fiitjee probablity...gud q

let A be the set of all 3X3 determinant having entries +1 or -1. if a determinant D from set A is chosen randomly, then probability that product of elemrnts of any row or any column is -1 is

a) 1/32 b) 1/8 c)1/16 d) none

ans a)1/32

nt getting ans pls help

25 Answers

1
harsh jindal ·

KOI REPLY TO KARO YAAR

1
rickde ·

meself getting above 250

quite a number of my frnds above 250....one getting 400 even

wat abt u ????????/

1
harsh jindal ·

HOW MANY MARKS U ASPECT TO GET IN THIS FIITJEE FULL TEST 12
I WILL GET AROUND 250

1
harsh jindal ·

\begin{bmatrix} -1 & -1 &-1 \\ -1& 1 & 1\\ -1& 1&1 \end{bmatrix}\begin{bmatrix} -1 & -1 &-1 \\ 1& -1 & 1\\ 1& - 1&1 \end{bmatrix}\begin{bmatrix} -1 & -1 &-1 \\ 1& 1 & -1\\ 1& 1&-1 \end{bmatrix}\begin{bmatrix} -1 & 1 &1 \\ -1& -1 & -1\\ -1& 1&1 \end{bmatrix}\begin{bmatrix} 1 & -1 &1 \\ -1& -1 &- 1\\ 1& - 1&1 \end{bmatrix}\begin{bmatrix} 1 & 1 &-1 \\ -1& -1 &- 1\\ 1& 1&-1 \end{bmatrix}\begin{bmatrix} 1 & 1 &-1 \\ 1& 1 &- 1\\ - 1& - 1&-1 \end{bmatrix}\begin{bmatrix} -1 &1 &1 \\ - 1& 1 &1\\ - 1& - 1&-1 \end{bmatrix}}\begin{bmatrix} 1 &- 1 &1 \\ 1& -1 &1\\ - 1& - 1&-1 \end{bmatrix}

4
UTTARA ·

ya rickde got it now

Thanks Harsh

1
rickde ·

thank you everyone

pls try matrices thread

1
rickde ·

me too missed the last 9 cases.......

they proceeded like tis total 9 positions...two choices
hence 2^9

1
rickde ·

@uttara

at last got 16 cases

first 2 as harsh showed 1+6=7

then consider the fourth case as harsh showed
1 full row n 1 full column
we get 8

the last one is all the edges -1

hence 16

latex not working[2]

1
harsh jindal ·

\begin{bmatrix} -1 & -1 &- 1 \\ -1& -1 &-1 \\ -1 & -1 & -1 \end{bmatrix}
\begin{bmatrix} -1 & 1 & 1 \\ 1&- 1 &1 \\ 1 & 1 &- 1 \end{bmatrix}\begin{bmatrix} 1 & -1 & 1 \\ 1& 1 &-1 \\ -1 & 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & -1 \\ - 1& 1 &1 \\ 1 &- 1 & 1 \end{bmatrix}\begin{bmatrix} -1 & 1 & 1 \\ 1& 1 &-1 \\ 1 &- 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & -1 & 1 \\ - 1& 1 &1 \\ 1 & 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 1 & -1 \\ 1&- 1 &1 \\ -1 & 1 & 1 \end{bmatrix}

4
UTTARA ·

But how total possible dets = 29 ??

4
UTTARA ·

So remainin 6 + 1 + 9 = 16 cases correct

I missed these last 9 cases

4
UTTARA ·

in # 8

U r third matrix is wrong

1
rickde ·

boss first atleast show 9 different cases.....we are not getting more than 7..

saare cases wit diagram n explanation pls

1
rickde ·

wat noone interested [2]

bhaiyas sirs pls help!!!!!! [17]

1
harsh jindal ·

THE ANSWER OF PROBABILITY SHOULD BE GREATER THAN 1/32
BECAUSE THERE ARE MORE THAN 16 CASES

1
harsh jindal ·

FOR FIRST DIAGRAM ONLY 1

FOR SECOND DIAGRAM :- SELECT 1 NEGATIVE IN FIRST ROW THEN THERE ARE 2 PLACES FOR SECOND NEGATIVE AND AFTER PLACING 2ND THERE IS ONLY 1 PLACE FOR 3RD NEGATIVE SO 3x2x1=6 CASES

FOR 3 DIAGRAM : PLEASE CHECK YOURSELF[1]

1
rickde ·

@harsh 16...how

pls show the steps wit reasoning

4
UTTARA ·

I considered 1st one of ur matrices as one case and 2nd as 3! cases

that is 1 + 6 = 7 cases in total

ur 3rd is also included in these 3! cases

1
harsh jindal ·

SEE IN THESE EXAMPLES THAT MULTIPLICATION OF ANY ROW OR COLUMN IS -1 AND THERE IS 16 MATRICES THAT FORMED LIKE THIS

1
harsh jindal ·

SEE EXAMPLES OF CASES LIKE
\begin{bmatrix} -1 & -1 & -1\\ -1& -1 &-1 \\ -1& -1 & -1 \end{bmatrix}ONLY 1 LIKE THIS

\begin{bmatrix} -1 & 1 & 1\\ 1& -1 &1 \\ 1& 1 & -1 \end{bmatrix} ONLY 6 LIKE THIS

\begin{bmatrix} -1 & -1 & -1\\ 1 & 1 &-1 \\ 1& 1 & -1 \end{bmatrix} 9 LIKE THIS

4
UTTARA ·

@Harsh : u speaking abt all possible total no of dets or cases where product of elements is ±1???

4
UTTARA ·

@Prophet Sir It's given to be a determinant

1
harsh jindal ·

I THINK THEY SOLVED THE PROBLEM BY SUPPOSING THAT PRODUCT OF ENTRIES OF EACH INDIVIDUAL ROW AND COLUMN IS -1

1
rickde ·

sir in q it is given determinant......

but in the soln they took total cases as 2^9 ??[12]

cud u please provide solution for both the cases......

341
Hari Shankar ·

Please clarify whether its a matrix or a determinant. Because for a determinant a matrix and its transpose will not be distinct elements of the set A.

Your Answer

Close [X]