Rationalizing,
u get
(cos\theta +isin\theta )^{2}/(cos^{2}\theta +sin^{2}\theta )
=cos2@+isin2@
so arg.=\tan^{-1}(sin2\theta /cos2\theta )
pi/2<2\theta<pi
domain of tan@(-pi/2,pi/2)
ans b.
Rationalizing,
u get
(cos\theta +isin\theta )^{2}/(cos^{2}\theta +sin^{2}\theta )
=cos2@+isin2@
so arg.=\tan^{-1}(sin2\theta /cos2\theta )
pi/2<2\theta<pi
domain of tan@(-pi/2,pi/2)
ans b.