FIND

If f(x)=\frac{a^x}{a^x +\sqrt{a}} [a>0]

then evaluate

\sum_{r=1}^{2n-1}{2f(\frac{r}{2n})}

4 Answers

21
eragon24 _Retired ·

so ans is 2n-1....

isnt it?

1
aashna jadon ·

it should be (1+2n)/2

1
Che ·

no i guess eragon is correct....

1
Che ·

if we take any i\epsilon (1,2n-1)

f\left(\frac{i}{2n} \right)+f\left(\frac{2n-i }{2n}\right)=1

hence

f\left(\frac{1}{2n} \right)+f\left(\frac{2n-1 }{2n}\right)=1

f\left(\frac{2}{2n} \right)+f\left(\frac{2n-2 }{2n}\right)=1

so on

therefore in sumation \sum_{r=1}^{2n-1}{f\left(\frac{r}{2n} \right)}

sum of first and last term is1, 2nd and second last term is 1 and so on

this leaves us with middle term which is {f\left(\frac{n}{2n} \right)}

hence teh given summation is 2\sum_{r=1}^{2n-1}{}{f\left(\frac{r}{2n} \right)}=2(n-1)+2f(\frac{1}{2})=2(n-1)+2.\frac{1}{2}=2n-1

Your Answer

Close [X]