gud one

ΣΣ(r+s)(Cr+Cs+CrCs)
0≤i<j≤n

10 Answers

3
iitimcomin ·

so summation of both r and s frm 0 to n??????

3
iitimcomin ·

3
iitimcomin ·

3
iitimcomin ·

is this rite nish byah............................

1
Dead Man ·

sorry,but your answer is not matching with the correct answer

62
Lokesh Verma ·

S=\sum_{r=0}^{n}\left\{{\sum_{s=r+1}^{n}{(r+s)(Cr+Cs+CrCs)}} \right\} \\ =\sum_{r=0}^{n}\left\{{\sum_{s=r}^{n}{(r+s)(Cr+Cs+CrCs)}} \right\}-\sum_{r=0}^{n}\left\{{\sum_{s=r}^{r}{(r+s)(Cr+Cs+CrCs)}} \right\} \\ =\sum_{r=0}^{n}\left\{{\sum_{s=r}^{n}{(r+s)(Cr+Cs+CrCs)}} \right\}-2\sum_{r=0}^{n}\left\{{r(2Cr+{C_r}^2)} \right\}

2S=\sum_{r=0}^{n}\left\{{\sum_{s=0}^{n}{(r+s)(Cr+Cs+CrCs)}} \right\}-2\sum_{r=0}^{n}\left\{{r(2Cr+{C_r}^2)} \right\}

2S=\sum_{r=0}^{n}\left\{{\sum_{s=0}^{n}{(r+n-s)(Cr+Cs+CrCs)}} \right\}-2\sum_{r=0}^{n}\left\{{r(2Cr+{C_r}^2)} \right\}
summing the above 2 ....
4S=\sum_{r=0}^{n}\left\{{\sum_{s=0}^{n}{(2r+n)(Cr+Cs+CrCs)}} \right\}-4\sum_{r=0}^{n}\left\{{r(2Cr+{C_r}^2)} \right\}

4S=\sum_{r=0}^{n}\left\{(2r+n){\sum_{s=0}^{n}{(Cr+Cs+CrCs)}} \right\}-4\sum_{r=0}^{n}\left\{{r(2Cr+{C_r}^2)} \right\}

4S=\sum_{r=0}^{n}\left\{(2r+n){{(n\times C_r+2^n+2^nC_r)}} \right\}-4\sum_{r=0}^{n}\left\{{r(2C_r+{C_r}^2)} \right\}

This is still a few steps far.. but see if i have done the right calculations and if you can manage it..

62
Lokesh Verma ·

Some one with an easier proof?

1
The Race begins... ·

Hint :

2\sum_{0\leq r<s\leq n}^{}\sum{}{CrCs} = \sum_{0\leq r,s\leq n}^{}\sum{}{Cr.Cs} - \sum_{0\leq r=s\leq n}^{}\sum{}{CrCs}

Solve three terms individually using this condition and u'll get answers for each in not more than 5-steps !

The only hindrance while solving this comes for the expression

\sum_{0\leq r=s\leq n}^{}{}\sum{(r+s)CrCs} = 2\sum_{r}^{}{r (Cr)^{2}}

which needs experts touch. nishant bhaiya, kaymant sir, prophet sir please help in reducing this expression !!!

1
Dead Man ·

thank u nishant sir your solution is correct.

Do u have an easier solution?????

62
Lokesh Verma ·

even i am looking for a simpler one...

Your Answer

Close [X]