Inequality

For all real numbers a; b; c prove the following chain inequality

3(a2 + b2 + c2) ≥  (a + b + c)2  ≥ 3(ab + bc + ca):

1 Answers

2305
Shaswata Roy ·

\frac{1}{2}[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]\geq 0(Sum of squares is +ve)

→ a^{2}+b^{2}+c^{2}\geq ab+bc+ca

Therefore,

3(a^{2}+b^{2}+c^{2})\geq (a^{2}+b^{2}+c^{2})+2(ab+bc+ca)\geq 3(ab+bc+ca)

→ 3(a^{2}+b^{2}+c^{2})\geq (a+b+c)^{2} \geq 3(ab+bc+ca)

Your Answer

Close [X]