\frac{1}{2}[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]\geq 0(Sum of squares is +ve)
→ a^{2}+b^{2}+c^{2}\geq ab+bc+ca
Therefore,
3(a^{2}+b^{2}+c^{2})\geq (a^{2}+b^{2}+c^{2})+2(ab+bc+ca)\geq 3(ab+bc+ca)
→ 3(a^{2}+b^{2}+c^{2})\geq (a+b+c)^{2} \geq 3(ab+bc+ca)
For all real numbers a; b; c prove the following chain inequality
3(a2 + b2 + c2) ≥ (a + b + c)2 ≥ 3(ab + bc + ca):
\frac{1}{2}[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]\geq 0(Sum of squares is +ve)
→ a^{2}+b^{2}+c^{2}\geq ab+bc+ca
Therefore,
3(a^{2}+b^{2}+c^{2})\geq (a^{2}+b^{2}+c^{2})+2(ab+bc+ca)\geq 3(ab+bc+ca)
→ 3(a^{2}+b^{2}+c^{2})\geq (a+b+c)^{2} \geq 3(ab+bc+ca)