\hspace{-16}$Let $\bf{a^2(a+p)=b^2(b+p)=c^2(c+p)=k}$.\\\\\\ Then We can say that $\bf{a\;,b\;,c}$ are the Roots of the equation.....\\\\\\ $\bf{x^2(x+p)=k\Leftrightarrow x^3+p.x^2+0.x-k=0}$\\\\\\ So $\bf{a+b+c = -p}$\\\\\\ $\bf{ab+bc+ca=0}$\\\\\\ $\bf{abc=k}$
If three distinct real numbers a,b,c satisfy
a2(a+p)=b2(b+p)=c2(c+p)
where pεR,then the value of bc+ca+ab is?
-
UP 0 DOWN 0 0 1
1 Answers
man111 singh
·2012-10-04 21:20:30