similarly we can proceed for the maximum value of S.
if nyone interested can try, or else will post the solution tomorrow,
prove that
\frac{1}{15}<\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}........\frac{99}{100}<\frac{1}{10}
let\ S=\frac{1}{2}.\frac{3}{4}. \frac{5}{6}.\frac{7}{8}...\frac{99}{100}\\ \\ we\ have, \\ \\ \frac{5}{6}>\frac{4}{5},\\ \\ \frac{7}{8}>\frac{6}{7}\\ \\ .\\ .\\ .\\ \\ \frac{99}{100}>\frac{98}{99}\\ \\ multiplying\ all\\ \\ \frac{5}{6}.\frac{7}{8}...\frac{99}{100}>\frac{4}{5}.\frac{6}{7}.\frac{8}{9}...\frac{98}{99}\\ \\ multiplying\ both\ side\ by (\frac{1}{2}.\frac{3}{4})\\ \\ S>\frac{3}{8}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}...\frac{98}{99}\\ \\multiplying\ both\ sides\ by\ S\\ \\ S^2>(\frac{3}{8})^2.(\frac{4}{5}.\frac{6}{7}.\frac{8}{9}...\frac{98}{99}).(\frac{5}{6}.\frac{7}{8}...\frac{99}{100})\\ \\ S^2>(\frac{3}{40})^2\\ \\ => S>\frac{3}{40}>\frac{1}{15}
similarly we can proceed for the maximum value of S.
if nyone interested can try, or else will post the solution tomorrow,
the right hand side of the inequality can be proved as here http://targetiit.com/iit_jee_forum/posts/good_inequality_3921.html