let log2010(x-1)=a (1)
&
log2012(x+1)=b (2)
using (1).....2010a=x-1
using (2).....2012b=x+1=x-1+2=2010a+2
therefore 2012b-2010a=2
and acc to question...
2012a-2010b=2
thus we get a=b=1... and x=2011
\hspace{-16}$Find Real values of $\bf{x}$ in \\\\$\bf{2012^{\log_{2010}(x-1)}-2010^{\log_{2012}(x+1)}=2}
let log2010(x-1)=a (1)
&
log2012(x+1)=b (2)
using (1).....2010a=x-1
using (2).....2012b=x+1=x-1+2=2010a+2
therefore 2012b-2010a=2
and acc to question...
2012a-2010b=2
thus we get a=b=1... and x=2011