mathematics : series

find the product
\frac{(1^4 +\frac{1}{4})(3^4 +\frac{1}{4})(5^4 +\frac{1}{4}).......(49^4 +\frac{1}{4})}{(2^4 +\frac{1}{4})(4^4 +\frac{1}{4})(6^4 +\frac{1}{4}).......(50^4 +\frac{1}{4})}

3 Answers

1
b_k_dubey ·

\prod_{r=1}^{25}{}\frac{4(2r-1)^4+1}{4(2r)^4+1}

=\prod_{r=1}^{25}{}\frac{(2(2r-1)^2)^2+1}{(2(2r)^2)^2+1}

=\prod_{r=1}^{25}{}\frac{(2(2r-1)^2+1)^2-2(2(2r-1)^2)(1)}{(2(2r)^2+1)^2-2(2(2r)^2)(1)}

=\prod_{r=1}^{25}{}\frac{(8r^2-8r+3)^2-(4r-2)^2}{(8r^2+1)^2-(4r)^2}

=\prod_{r=1}^{25}{}\frac{(8r^2-12r+5)(8r^2-4r+1)}{(8r^2-4r+1)(8r^2+4r+1)}

=\prod_{r=1}^{25}{}\frac{(8r^2-12r+5)}{(8r^2+4r+1)}

= 113 1341 .......

= 18(252)+4(25)+1

1
Che ·

1
akari ·

thanks sirji

Your Answer

Close [X]