Matrices

1) Find the least positive integral value of "k" such that it satisfies-
{\begin{pmatrix} cos\frac{2 \pi}{7}\ -sin\frac{2 \pi}{7}\\ sin\frac{2 \pi}{7}\ \ cos\frac{2 \pi}{7} \end{pmatrix}}^k = \begin{pmatrix} 1 \ 0 \\ 0 \1 \end{pmatrix}

2) If A= {\begin{pmatrix} i \ \ 0 \\ 0 \ \ i \end{pmatrix}}, n ε N, then A4n equals-
a) A b) Null matrix c) Identity matrix d) -A

11 Answers

1
sanchit ·

2) c...

13
Avik ·

Right sanchit, i was wondering wht was "i" by the way :P

1
1.618 ·

1) →2?

13
Avik ·

Nah Ray, ans fr 1) is - 7

1
1.618 ·

:( Mujhse kuch sahi nahi hota :(

39
Pritish Chakraborty ·

A try at Q1..

Q1. \begin{bmatrix} cos\frac{2\pi}{7} & -sin\frac{2\pi}{7} \\ sin\frac{2\pi}{7} & cos\frac{2\pi}{7} \end{bmatrix}^{k - 1}\begin{bmatrix} cos\frac{2\pi}{7} & -sin\frac{2\pi}{7} \\ sin\frac{2\pi}{7} & cos\frac{2\pi}{7} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}

The first matrix is the inverse of the second matrix on the LHS, let us say. So now we need to find the inverse of the second matrix on the LHS.
The inverse is \begin{bmatrix} cos\frac{2\pi}{7} & -sin\frac{2\pi}{7} \\ sin\frac{2\pi}{7} & cos\frac{2\pi}{7} \end{bmatrix}^{k - 1} = \begin{bmatrix} cos\frac{2\pi}{7} & sin\frac{2\pi}{7} \\ -sin\frac{2\pi}{7} & cos\frac{2\pi}{7} \end{bmatrix}
Lol I can't get beyond this..

13
Avik ·

Hmm... i didn't think of inverse though, lekin aage wakai samajh nahi aa rahaa abhi.

1
Anirudh Kumar ·

Q1 find square of the given matrix it follows a pattern

that is after mulitplying the matrix k times
that first term is Cos(2Ï€k/7) likewise for other terms.

for Cos(2Ï€k/7) to be 1

2Ï€k/7=1 => k=7

1
1.618 ·

Oh damn!!

I squared, saw the pattern and wrote the answer as 2!!

1
Anirudh Kumar ·

is there any other way of solving this question?

13
Avik ·

My mistake too... Thnx Anirudh [1]

Your Answer

Close [X]