\hspace{-16}$Find all real polynomials $\bf{p(x)}$ such that $\bf{p(x)\cdot p(x+1)=p(x^2)\;\forall x\in \mathbb{Z}}$
-
UP 0 DOWN 0 0 0
\hspace{-16}$Find all real polynomials $\bf{p(x)}$ such that $\bf{p(x)\cdot p(x+1)=p(x^2)\;\forall x\in \mathbb{Z}}$