Practice....

long time since posted ques.............here are some for 2011 aspirants
daily updates.....

Day1
Q1 Express1*3*5*...*(2n-1)2*4*6*8....*(2n) as a2w where a is odd and w<2n

Q2 Prove that there is no prime number in sequence
10001,100010001,1000100010001,.....

Q3 Sum
^nC_1-\frac{1}{2}\ ^nC_2+\frac{1}{3} \ ^nC_3-....+(-1)^{n+1} \ \frac{1}{n} \ ^nC_n

Q4 Sum of the series
1+22+333+.....+n(11....1)
n

Q5\sum_{n=1}^{\infty}{\sum_{m=1}^{\infty}{\frac{1}{m^2n+n^2m+2mn}}}

Q6 Let f is a differentible function at x=a and f(a)≠0.
then calculate \lim_{n\rightarrow \infty}[\frac{f(a+1/n}{f(a)}]^n

Q7 \lim_{n\rightarrow \infty}\frac{1}{n^4}\prod_{i=1}^{2n}{(n^2+i^2)}^{1/n}

------------------------------------------------------------------------------------
Day2
Q8For k=1,2,3...caclulate
sin(\frac{\pi}{2k}).sin(\frac{3\pi}{2k}).sin(\frac{5\pi}{2k}).....sin(2[\frac{k+1}{2}]-1)\frac{\pi}{2k}

Q9 \sum_{n=1}^{\infty}{3^{n-1} \sin^3(\frac{x}{3^n})}

Q10 Prove that n^5/5+n^4/2+n^3/3-n/30 is an integer for n=1,2,3..

Q11 Given\int_{0}^{\infty}{\frac{sinx}{x}}dx=\pi/2
calculate\int_{0}^{\infty}{\frac{sin^2x}{x^2}}dx

Q12 \sum_{k=1}^{n}{\frac{k^2}{2^k}}

Q13 Find the largest integer n for which n3 + 100 is divisible by n+10?

----------------------------------------------------------------------------------

27 Answers

49
Subhomoy Bakshi ·

ummm i cannot prove..

{cos\frac{x}{2^n}}=1-\frac{x^2}{n^2\pi ^2}

in another way...as we all know

\frac{sin x}{x}=1-\frac{x^2}{3!}+\frac{x^4}{5!}-\frac{x^6}{7!}....{maclaurin series}

but how does that help???

no way...[3][3]

1
Ricky ·

Q . 11 -

In all the integrations done below , the limits are from zero to infinity .

∫ sin 2 xx 2 dx

= - sin 2 xx + ∫ sin 2 xx dx . . . . . . . . ( After Part - Integrating )

Substituting " x = 2 z " yields ,

= - sin 2 xx + ∫ sin zz dz

= A + B . . . . . . . . ( Suppose )

Now put the limits.

Obviously , A = 0 .

And B is given to be Î 2 .

Hence the answer is Î 2 .

1
Ricky ·

Q .11 > Is it needed that we use the fact given ?

1
" ____________ ·

DOUBT

evaluate

\int \frac{dx}{sin^n x + cos ^n x}

\texttt{CASE 1- when " n " is an even integer }

where n >2

\texttt{CASE 2- when " n " is an odd integer , where n > 1 }

341
Hari Shankar ·

12) Easier way:

t_r = \frac{r^2}{2^r} = \left[\frac{r(r+2)}{2^{r-1}} - \frac{(r+1)(r+3)}{2^r} \right]+ \frac{3}{2^r}

Hence \sum_{r=1}^n t_r = \sum_{r=1}^n \left[\frac{r(r+2)}{2^{r-1}} - \frac{(r+1)(r+3)}{2^r} \right]+ \sum_{r=1}^n \frac{3}{2^r}

\left[3 - \frac{(n+1)(n+3)}{2^n} \right]+ 3 \left(1-\frac{1}{2^n} \right) =6 - \frac{n^2+4n+6}{2^n} as obtained above

341
Hari Shankar ·

10) Easier way:

Let S = \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{n}{30}

Then S-n = \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{31n}{30}

= \left(\frac{n^5-n}{5}\right) + \left( \frac{n^3-n}{3} \right) + \left(\frac{n^2-n}{2} \right)

By Fermat's Little Theorem, each of the bracketed expressions is an integer.

Hence S-n is an integer which implies S is an integer

1
Ricky ·

1
Ricky ·

1
Ricky ·

Q 13 >

n 3 + 100

= n 3 + 1000 - 900

= { multiple of (n + 10 ) } - 900 ............ as x 3 + y 3 is always divisible by x + y .

Hence , to satisfy the given condition , 900 must be a multiple of n + 10 also .

We have to maximise n such that n + 10 divides 900 .

Clearly , n = 890

24
eureka123 ·

@ricky,organic,RPF

did u notice Q1 is edited ??

21
omkar ·

2)

S(k) = 1 + 10^4 + 10^8 + . . . + 10^(4k)
for some positive integer k.

Note the three following identities:

10^(4k+ 4) - 1 = (10^4 - 1)(1 + 10^4 + 10^8 + . . . + 10^(4k)),

10^(2k + 2) - 1 = (10^2 - 1)(1 + 10^2 + 10^4 + . . . + 10^(2k)),

10^(4k+4) - 1 = (10^(2k+2) - 1)( 10^(2k+2) + 1).

Combining these,

(10^4 - 1)(1 + 10^4 + 10^8 + . . . + 10^(4k)) = 10^(4k+4) - 1
= (10^(2k+2) - 1)( 10^(2k+2) + 1).
= (10^2 - 1)(1 + 10^2 + 10^4 + . . . + 10^(2k)) (10^(2k+2) + 1)

Since (10^4 - 1)/(10^2 -1) = 100 + 1 = 101, we have

(1 + 10^4 + 10^8 + . . . + 10^(4k))*101
= (1 + 10^2 + 10^4 + . . . + 10^(2k)) ( 10^(2k + 2) + 1)

Since 101 is a prime number, at least one of the two factors on the right hand side is divisible by 101. If k > 1, then for whichever of them is divisible by 101, the quotient will exceed 1; hence 1 + 10^4 + 10^8 + . . . + 10^(4k) is expressible as a product of two factors, each greater than 1. When k=1 we have 10001 as a factor which is composite (73*137).

1
Ricky ·

.......... ( 1 )

which I have written after expressing " sin x " in Taylor series ( as stated by Organic ) ,

and equating the result with the expression of Infinite product for " sin x " .

Equate the co - efficients of x 3 in ( 1 ) .

.............. ( 2 )

or ,

From where we get ,

where

is the Riemann Zeta Function .

P . S . --------- > I have 15 different mathods of finding ξ ( 2 ) .

1
student ·

@organic

ur result combined with the above result helps in proving

\sum_{1}^{\infty}{\frac{1}{n^2}}=\frac{\pi^2}{6}

try

1
student ·

poof for what kaymant sir has asked

writing sin xx in polynomial form

\frac{\sin x}{x}=\prod_{n=1}^{\infty}{(\frac{x}{n\pi}-1)(\frac{x}{n\pi}+1)}\\ \frac{\sin x}{x}=\prod_{n=1}^{\infty}{(\frac{x^2}{n^2\pi^2}-1)}

1
Ricky ·

49
Subhomoy Bakshi ·

sin\,x=2sin\,\frac{x}{2}.cos\,\frac{x}{2}=4sin\,\frac{x}{4}.cos\,\frac{x}{2}.cos\,\frac{x}{4}=8sin\,\frac{x}{8}.cos\,\frac{x}{2}.cos\,\frac{x}{4}.cos\,\frac{x}{8}

continuing for n times we get

sin\,x=2^nsin\,\frac{x}{2^n}.cos\,\frac{x}{2}.cos\,\frac{x}{4}.cos\,\frac{x}{8}.....cos\,\frac{x}{2^n}

let us multiply and divide this product by x and rewrite 2nx.sinx2n as sinx2nx2n

we get,

sin\,x=x\frac{sin\,\frac{x}{2^n}}{\frac{x}{2^n}}.cos\,\frac{x}{2}.cos\,\frac{x}{4}.cos\,\frac{x}{8}.....cos\,\frac{x}{2^n}

now if we let n→∞ by keeping x constant we will get.....
in formlimh→0sin hh=1

thus for infinite terms we get,

\frac{sin\,x}{x}=cos\,\frac{x}{2}.cos\,\frac{x}{4}.cos\,\frac{x}{8}.....\propto

\Rightarrow \frac{sin\,x}{x}=\prod_{1}^{\propto }{cos\frac{x}{2^n}}

1
Ricky ·

With all due regards , sir , I can prove it , but , it would take at least 30 minutes to latexify and post the proof . However , I shall prove it as you wish .

66
kaymant ·

@Ricky,
In #2, you say
"we can prove the following identity concerning infinite products:
\dfrac{\sin x}{x}=\prod_{n=1}^\infty\left(1-\dfrac{x^2}{n^2\pi^2}\right)

Prove it.

24
eureka123 ·

alternate for Q6

we can write limit as
\lim_{t\rightarrow 0}[\frac{f(a+t)}{f(a)}]^{1/t}

For small t, f(a+t) and f(a) have same sign

=> log(\lim_{t\rightarrow 0}[\frac{f(a+t)}{f(a)}]^{1/t})=\lim_{t\rightarrow 0}(log[\frac{\left|f(a+t)\right|}{\left|f(a)\right|}]^{1/t})

=>\lim_{t\rightarrow 0}(\frac{log\left|f(a+t)\right|-log\left|f(a)\right|}{t})

This is ab initio defn of derivate of loglf(x)l at x=a

=> =>e^{\frac{f'(a)}{f(a)}}

**in a hurry used t in place of x...sorry for that [2]

1
Ricky ·

4 >

24
eureka123 ·

Sorry for error in Q1..corrected now

@gallarado,organic
Q3 ,6 are rite

49
Subhomoy Bakshi ·

= e^{f'(a)}-e^{f(a)}

49
Subhomoy Bakshi ·

actually mistake in second last step

49
Subhomoy Bakshi ·

e^{f'(a)}.e^{\frac{1}{f(a)}}=e^{f'(a)+\frac{1}{f(a)}}

isn't it?

49
Subhomoy Bakshi ·

isnt the last step wrong??

1
Ricky ·

P . S . ------------------ Thanks to " ut10 " and " Organic " for pointing out a silly mistake .

1
Ricky ·

3 >

Your Answer

Close [X]