Probability

On an average out of 12 games of chess played by A and B, A wins 6, B wins 4 and 2 games end in a tie.

A and B play a tournament of 3 games. Calculate the probability that A and B win alternate game, no game is tied up.

18 Answers

1
t2sif ·

is the answer 99/128

1
Tapas Gandhi ·

for q2> all above ans incorrect...

Answer:
3/8

21
amit sahoo ·

my ans is coming to be 1/8.

sol-> probability(p)=1/8*4C0*(1/2)4+ 1/8*4C1*(1/2)4 + 1/8*4C2*(1/2)4 + 1/8*4C3*(1/2)4 + 1/8*4C4*(1/2)4

or,p=1/16*1/8*16
or,p=1/8

49
Subhomoy Bakshi ·

ohh sorry i get i am wrong!!

i have included the case when only the first four coins give head twice!!

so this method is wrong!!

strifing for a right answer!!

49
Subhomoy Bakshi ·

anyway i will do mine!!

so, no of possible outcomes
for each coin tossed, there are 2 outcomes possible, heads or tails.
so total possible outomes is 27 for 7 coins.

now for the first three coins to be heads, no of possible outcomes is, 24

now, the set can strt wid 1 2 3 4 or 5

so total favourable outcomes is 5X24

P(E)=58

49
Subhomoy Bakshi ·

@t2sif: please post ur solution!!

49
Subhomoy Bakshi ·

it will PROBABLY be 58

49
Subhomoy Bakshi ·

sry i was horribly wrong!![2]

49
Subhomoy Bakshi ·

is it 14??

106
Asish Mahapatra ·

Is it 5/36 ?

1
Tapas Gandhi ·

Question 2
A fair coin is tossed 7 times, then probability that atleast 3 consecutive heads occur is equal to

1
Tapas Gandhi ·

did u take no tie in tournament as >
there has to be a winner in each game for SURE

i took it as >
5/6 for no tie in the game

106
Asish Mahapatra ·

why?.
P(Tie) = 1/6
P(A win) = 1/2
P(B win) = 1/3

1
Tapas Gandhi ·

but 1/6 probability of tie which has to be removed >>>no tie???

1
Tapas Gandhi ·

cud u elaborate

13121356+12131256

106
Asish Mahapatra ·

yeah considered that

ABA = 1/2*1/3*1/2
BAB = 1/3*1/2*1/3

1
Tapas Gandhi ·

and no tie case??

1
Tapas Gandhi ·

it is.
did u consider BAB (win) case???

Your Answer

Close [X]