problem on complex numbers (help)

if iz3 - z2 - z + i = 0, then show that |z| = 1

The solution given in my book is something like this...

(z - i)(iz2 - 1) = 0 so, z = i => |z| = 1 (i got it till here) but,

(iz2 - 1) = 0 then how can |z| = 1 ?? (plese help me understand this)!!!!

6 Answers

21
Swaraj Dalmia ·

iz2-1=0
→z2=1/i
→z2=-i
→z2=1/2*(1-1-2i)
→z2=1/2*(1+i2-2i)
→z=1/√2*(1-i)
→|z|=1

262
Aditya Bhutra ·

swaraj, you could have taken modulus right at the second step.

1
Debosmit Majumder ·

isn`t the factoriszation wrong?

(z-i)(iz2-1) = iz3 - z +z2 + i but in the qstn it is -z2

36
rahul ·

@Aditya -

maybe you mean this...

if iz2 - 1 = 0 then,
z2 = 1/i
=> |z|2 = 1/|i| => |z|2 = 1 or, |z| = 1 ?????

1
AVISIKTA UPADHYAY ·

iz2 - 1= 0 then,
z2= 1/i,
|z|2=1/|i|,
|z|2=1 implying |z|=1...

36
rahul ·

ok thanks to evry1 for help..!!

Your Answer

Close [X]