3 Answers
Shaswata Roy
·2012-09-21 10:24:20
Let P(n):√1+√2+√3....√n≥√n(n+1)/2
P(1):√1≥√1*2/2
Hence P(1) is true
Let P(n) be true
Before going to P(n+1) we note that-
(√n+1)2=n+1
while (√n+√2)2=n+2+2√2n
therefore √n+√2≥√n+2
P(n+1):√1+√2+√3+...√n+1 ≥ √n(n+1)2+√n+1=√(n+1)2*{√n+√2]
≥√(n+1)(n+2)2
Which gives us the required result.
Hence P(n) is true for all natural numbers.
- Shaswata Roy line 6 should be read as 2 in place of 1.Upvote·0· Reply ·2012-09-21 10:26:42