quadratic polynomial

\hspace{-16}$If $\bf{a,b,c\in\mathbb{R}}$ and $\bf{f(x)}$ is a Quadratic Polynomial such that\\\\ $\bf{\begin{Bmatrix} \bf{f(a)=bc} \\\\ \bf{f(b)=ca} \\\\ \bf{f(c)=ab} \end{Bmatrix}}$\\\\\\ Then $\bf{f(a+b+c)=}$

I am Getting f(a+b+c) = (ab+bc+ca)

4 Answers

262
Aditya Bhutra ·

same here .

1
rishabh ·

even im getting the same,
f(x) = x2 - (a+b+c)x + ab+bc+ac

341
Hari Shankar ·

P(x) = xf(x) -abc is a cubic with roots a,b,c and hence is equivalent to

x^3-x(a+b+c)+x^2(ab+bc+ca)-abc (bearing in mind that the constant term on both sides is -abc)

so that f(x) \equiv x^2-x(a+b+c)+(ab+bc+ca)

Its easily seen that f(a+b+c)=ab+bc+ca

1708
man111 singh ·

Thanks hsbhatt Sir,Rishab,Aditiya.

Your Answer

Close [X]