B nahin hai kya
(-5,8)`
If a, b, c are in A.P.
p, q, r are in H.P.
and ap, bq, cr are in G.P.
then(p/r)+(r/p) is equal to
(A) (a/c)+(c/a)
(B) (a/c)-(c/a)
(C) (b/q)+(q/b)
(D) (b/q)-(q/b)
-
UP 0 DOWN 0 0 33
33 Answers
arrey in rolley theorem
u first have to find the function
integrating the expression above and putting the values and further solving u will arrive at that result
solve the equations and in the end check the answer[1]
difrntial equation
y'=y/x + φ(x/y)
d solutin for this is
y=x/(log!cx!)
here ! ! denote mod
so φ(x/y) =??
put y/x =t
dy/dx=t+xdt/dx
we get
t+xdt/dx=t+φ(1/t)
xdt/dx=φ(1/t)
dx/x=dt/φ(1/t)
integrating on both sides
logcx=dt/φ(1/t)
we know that dt=dy/x-ydx/x2
φ(x/y)=dy/x-ydx/x2(1/logcx)
now comparing both the equations we get
[dy/x-ydx/x2]/φ(x/y)=x/y
φ(x/y)=lnx/y
integrating on both sides
logcx=dt/φ(1/t)
dt=dy/x-tdx/x
yahn wer did u integrate d othr side ??
sum one help......
even that roolles wala...........plez gimem ful sol m gettin stcuk in middle
oh meri maa
aage aapne aap kar le na wahan par dt ki value daal de jo last step mein likhi hui hai
fir aage nikaal le
roole waale mein ur options r not clear
give me visible options then i will tell
(A) b = 8, c =--5 (B) b = -5, c = 8
(C) b = 5, c =-ï€8 (D) b = -5, c =-ï€8
haan m,ethod bata na plezzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
aab hawa mein mat bata ....steps likh plez wta ur tellin 2 diff n int again mere ko ni smajh ra ...aab bata de bhai :P
arrey yahan pe saari properties likh rolle theorem ki
then we will proceed
chode
yeh kafi hai
woh int wala kar
options are
-y^2/x^2
y^2/x^2
-x^2/y^2
x^2/y^2
haan sahi hai bt tune last srep wrng kara hai
neways
tussi gr8 jo ji thanks
arrey isse integrate kar ke naya function nikaal liya
fir uss mein values daal di
aur kya?
Rolle’s Theorem holds for the function f(x) = x3 + bx2 + cx, 1 <= x <=2 at the point the value of b and c are
(A) b = 8, c = -5 (B) b = ï€5, c = 8
(C) b = 5, c =-ï€8 (D) b = ï€5, c =-ï€8
her itz cube n squre n all
haan bhai............ bt answr alag diey hai so confirmation ke liye dala :P
The function f(x) = p[x + 1] + q[x – 1], where [x] is the greatest integer function is continuous at x = 1, if
(A) p – q = 0 (B) p + q = 0
(C) p = 0 (D) q = 0
meko aara hai bt answer given is diffrnt