I hope I'm right !!!!
α = cisθ + √cis2θ-1 β = cisθ - √cis2θ-1
Squaring l α - i l = l β - i l
=> α2 - β2 = 2 (α - β) i
=> l α + β l = 2i
Now substituting calues of α & β
l 2cisθ l = l 2i l
If α and β are roots of z +1/z=2(cosθ +isinθ) ,0<θ<π ,
show that l α-i l=l β-i l
I hope I'm right !!!!
α = cisθ + √cis2θ-1 β = cisθ - √cis2θ-1
Squaring l α - i l = l β - i l
=> α2 - β2 = 2 (α - β) i
=> l α + β l = 2i
Now substituting calues of α & β
l 2cisθ l = l 2i l