Let |A| = r, Then A can be chosen in \binom{n}{r} ways , 1\le r \le n. Let |A\cap B|= t. then B can be chosen in \binom{r}{t}\cdot \binom{n-r}{p}\; \; , \; 1 \le t\le r , 1\le p \le n-r ways. Given A\cap B\cap C = \phi. Let |B\cap C| = k. Then C can be chosen in \binom{p}{k}\cdot 2^{r-t}\cdot 2^{n-r-p} = \binom{p}{k}\cdot 2^{n-p-t} ways. So total number of ways of choosing A,B,C is ------
\sum_{r=1}^{n}\sum_{t=1}^{r}\sum_{p=1}^{n-r}\sum_{k=1}^{p}\left (\binom{n}{r}\cdot \binom{r}{t}\cdot \binom{n-r}{p}\cdot \binom{p}{k}\cdot 2^{n-p-t}\right )
Which after computations (which only requires binomial theorem) , reduces (indeed reduces ,i have done the computation by hand) to \boxed{7^n + 5^n - 2\times 6^n}.
Notify if you need help with the computation. Basically sum up wrt. k,p,t,r in order.
Btw i know of a simpler solution...see here http://olympiads.hbcse.tifr.res.in/uploads/rmo-2004