try it out!!!

Let a and b be rel numbers such that
sin a+sin b=(√2)/2 and cos a+cos b =(√6)/2 then sin(a+b) will be ????

8 Answers

3
Swastika dutta ·

The answer is (√3)/2 :)

3
Swastika dutta ·

sorry!! by mistake i have posted this question in ' class 9-10 mathematics ' so i have posted the same
qstn here again.............!!!!!!!!!!!!!

62
Lokesh Verma ·

an alternate proof

\\e^{ia}+e^{ib}=\frac{\sqrt{3}+i}{\sqrt{2}} \\e^{-ia}+e^{-ib}=\frac{\sqrt{3}-i}{\sqrt{2}} \\\frac{e^{ia}+e^{ib}}{e^{i(a+b)}}=\frac{\sqrt{3}-i}{\sqrt{2}} \\e^{ia}+e^{ib}=\frac{\sqrt{3}-i}{\sqrt{2}}\times {e^{i(a+b)}} \\\frac{\sqrt{3}+i}{\sqrt{2}}=\frac{\sqrt{3}-i}{\sqrt{2}}\times {e^{i(a+b)}} \\{e^{i(a+b)}}=\frac{\sqrt{3}+i}{\sqrt{3}-i}=1/2+\sqrt{3}/2i

hence cos (a+b) = 1/2
sin (a+b) = √3/2

[1]

1
Bicchuram Aveek ·

sin a+sin b= √22

2 sin(a+b)2cos(a-b)2 = √22........(i)

cos a +cos b = √62

2 cos(a+b)2cos(a-b)2 = √62............(ii)

Dividing (i) by (ii)

tan(a+b)2 = 1√3
Taking principal value ( answer match karna hai yaar....nehi to general values liya hota)

a+b2 = 30°

a+b = 60°

sin(a+b) = √32 (Ans.)

62
Lokesh Verma ·

Good work aveek :)

1
Bicchuram Aveek ·

Thnx Sir....... :-)

62
Lokesh Verma ·

can you comment on Taking principal value ( answer match karna hai yaar....nehi to general values liya hota) ???

1
Bicchuram Aveek ·

Sir, not only 30° but many values of this expression satisfies the equation.....
else
(a+b)2 = nπ + 30°
a+b = 2nπ + 60 °

But of course sin(2nπ+60)° would have returned the same value for all integer values of n.

sin(2nπ+60)° = √32

Your Answer

Close [X]