TRY THIS

Show that
C_{0} - C_{1}\left(\frac{1+x}{1+nx} \right)+C_{2}\left( \frac{1+2x}{(1+nx)^{2}}\right)-C_{3}\left(\frac{1+3x}{(1+nx)^{3}} \right)+ ......... =0

1 Answers

1
1.618 ·

Check if i'm wrong anywhere..

\sum_{r=0}^{n}{(-1)^{r}} C^{n}_{r} \frac{1+rx}{(1+nx)^{r}}

= \sum_{r=0}^{n}{(-1)^{r}}\ C^{n}_{r} \frac{1}{(1+nx)^{r}} + \sum_{r=0}^{n}{(-1)^{r}}\frac{n}{r} C^{n-1}_{r-1} \frac{rx}{(1+nx)^{r}}

Solving further...we get,

(1-\frac{1}{1+nx})^{n}-\frac{nx}{1+nx}(1-\frac{1}{1+nx})^{n-1}

Which gives,

(\frac{nx}{1+nx})^{n}-(\frac{nx}{1+nx})^{n}=0

I skipped a step

Your Answer

Close [X]