wht to do?

1. If x = 2 + 5i (where i2 = - 1) and 2(1/1!9! + 1/3!7!) + 1/5!5! = 2a/b!, then the value of (x3 - 5x2 + 33x - 19) is equal to

(A) a

(B) b

(C) a - b

(D) a + b

4 Answers

1
Zuko Alone ·

2\left(\frac{1}{1!.9!}+\frac{1}{3!.7!} \right)+\frac{1}{5!5!} \\\\=\frac{1}{10!}\left( \begin{pmatrix} 10\\1 \end{pmatrix}+\begin{pmatrix} 10\\3 \end{pmatrix}+\begin{pmatrix} 10\\5 \end{pmatrix}+\begin{pmatrix} 10\\7 \end{pmatrix}+\begin{pmatrix} 10\\9 \end{pmatrix}\right) \\\\=\frac{512}{10!}

Now,
x^3-5x^2+33x-19 \\=(x-2)^3+(x-2)^2+25(x-2)+35 \\=-125i-25+125i+35 \\=10

B is the answer.

1
Manmay kumar Mohanty ·

gr8 jake bhaiya

341
Hari Shankar ·

Another method:

http://www.goiit.com/posts/list/algebra-in-complex-numbers-if-x-2-5i-then-the-value-of-x-3-5x-990384.htm#1194717

1
rvking ·

thnx :D

Your Answer

Close [X]