YG ii 23 maths

NUMBER OF ORDERED TRIPLETS l,m,n ( l,m.n are positive integers and 1≤ l,m,n≤ 8 ) such that 2l + 3m + 5nis divisible by 4 is _______________

[94] a> 224 b>288 c> 60 d> 256

5 Answers

1
Optimus Prime ·

2l+3m+5n
=2l+(4-1)m+(4+1)n
=2l+ multiple of 4+(-1)m+1n

here for l=1 m=2,4,6,8

4x8=32ways

for l≠1 m=1,3,5,7

7x4x8=224 ways

so option d

1
playpower94 ·

well i didnt get >>>
for l≠1 m=1,3,5,7

7x4x8=224 ways

<<<

please make me understAND dis step [76]

1
playpower94 ·

well some one make clear about the steps nt getting it!!!

1
The Scorpion ·

observe dat l,m,n ε [1,8]

in d first case when l=1, m can take 4 values viz., 2,4,6,8... and n can take 8 values viz.,1 to 8... so no. of ordered triplets = 4x8 = 32

in d second case when l≠1, l can take 7 values viz., 2 to 7... m can take 4 values viz., 1,3,5,7... and n can take 8 values viz., 1 to 8... so no. of ordered triplets = 7x4x8 =224

hence answer is 224+32=256... option D........

1
kmmankad ·

Whats this" YG ii 23"?

Your Answer

Close [X]