let y=mx+c is the normal
then we have x2=mx+c
x=[m±√(m2+4c)]/2
also we have dy/dx=2x=-1/m=
-1/m=m-√(m2+4c)
or √(m2+4c)=m+1/m
so the points are x=m±(m+1/m)=2m+1/m or -1/m
D2=(x-x')2+(x2-x'2)2=(2m+2/m)2+(4m2+4)2
now find dD/dm
let y=mx+c is the normal
then we have x2=mx+c
x=[m±√(m2+4c)]/2
also we have dy/dx=2x=-1/m=
-1/m=m-√(m2+4c)
or √(m2+4c)=m+1/m
so the points are x=m±(m+1/m)=2m+1/m or -1/m
D2=(x-x')2+(x2-x'2)2=(2m+2/m)2+(4m2+4)2
now find dD/dm
you know that the normal meets again at -t-2/t
find the distance between points with parametric coordinates t1 and t2
now minimize :)