2) write it as
log[(1 + x + x2) / (1 - x + x2)]
q1)fna and gna exist and are not equal for some n .
Further if f(a)g(x) - f(a) - g(a)f(x) +g(a) =4
g(x) - f(x)
then value of n is:
ans is 4 how??
lim ( 1+24+34+........n4 - lim 1+23+33+........n3 )
n→∞ n 5
Q2)expansion of log(1+3x+2x2 ) is:
(2) 1+3x+2x2=2x2+3x+1=2x2+2x+x+1=2x(x+1)+(x+1)
=(2x+1)(x+1)
So log(2x2+3x+1)=log[(2x+1)(x+1)]=log(2x+1) +log(x+1)
=(1+2x+(2x)22+...................∞)+(1+x+x22+.....................∞)
I hope that you can solve it from this point