Binomial theroem

If (1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+.......C_{n}x^{n}

then prove that \sum_{0\leq i}^{}{\sum_{<j\leq n }^{}{}}C_{i}C_{j}(i+j)=n(2^{2n-1}-\frac{1}{2}. ^{2n}C_{n})

3 Answers

11
Tarun Kumar Yadav ·

make use of the method of mathematical induction in proving the given expression

1
Samarth Kashyap ·

pls cud u post full method?

11
Tarun Kumar Yadav ·

Σ Σ CiCj = (22n-(2nCn))/2....(1)
0≤i<j≤n

let P=ΣΣ(i+j)CiCj

replacing i by n-i and j by n-j,we get

P=ΣΣ(n-i+n-j)Cn-iCn-j

P=ΣΣ(2n-(i+j))CiCj

P=2nΣΣCiCj - ΣΣ(i+j)CiCj

but ΣΣ(i+j)CiCj = P

therefore,

2p = the expression given in (1)

Your Answer

Close [X]