CALCULUS

1. \int_{e^-^1}^{e^2}{|lnx / x | } dx = ?

2.\int_{sinx}^{1}{t^2 f(t)dt }= ( 1 - sinx ) , then find f (1 / √3) = ?

3.\lim_{x \rightarrow infinity}1/\pi \sum_{r=1}^{n}{tan^-^1(1/2r ^2)} = ?

9 Answers

3
msp ·

q1)\int_{e^{-1}}^{e}{-\frac{lnx}{x}}dx+\int_{e}^{e^{2}}{\frac{lnx}{x}}dx

and then take t=lnx.

1
aieeee ·

MSP, A BIT CORRECTION in the limits.

\int_{e^-^1}^{e^2}{|lnx/x| }dx = -\int_{e^-^1}^{1}{lnx/x }dx + \int_{1}^{e^2}{lnx / x}

now, substituting lnx in each , we put t= lnx i.e. dt = dx / x.

= [- 1/2 (lnx)2 ](limits e-1 to 1) + [1/2 (lnx)2 ] (limits - 1 to e2]

= 5/2

1
aieeee ·

2) . using Newton-Lebnitz formula , differentiate both sides.

-sin^2x. f(sinx).cosx = -cosx

so,f(sinx) = cosx / (sin^2x.cosx)

now,if, sinx = 1/\sqrt{3},

then f( 1/√3 ) = 3

3
msp ·

no abi i think i am rite.

1
aieeee ·

might be

62
Lokesh Verma ·

no sankara.. see properly.. aieee is right..

1
aieeee ·

tan-1 ( 1/2r2 ) = tan -1 ( 2/4r2)

= tan-1[ (2r+1)-(2r-1)] / [ 1+ (2r+1)(2r-1)] = tan-1 ( 2r+1) - tan-1(2r-1)

So, \lim_{n\rightarrow infinity} \sum_{r=1}^{n}{tan^-^1} = pi/2 - pi/4 = pi/4

\lim_{n\rightarrow infinity}1/\pi \sum_{r=1}^{n}{tan^-^1} = 1/4

3
msp ·

oops sry,my mistake.

1
aieeee ·

k. no problem.

Your Answer

Close [X]