Confused

psoting some doubts of functions here...plzz help...

1. range of f(x) = 12-sin 3x, m getting [1/2,1]...but the answer is [1/3,1].

2. If f(x) is an odd peridic function with period 2 then f(4) equals...??

3. f:R→R...then f(x) = x^3 + x^2 f'(1) + xf"(2) + f"'(3) then f(2) - f(1)...???

4. the value of b for which the function f(x) = sin x - bx + c is decreasing in the interval (-infinit, infinity) is?

Can i use the first derivative metho in the fourth q???

8 Answers

1
rahul nair ·

q1.
sin3x-[-1,1]
so range of the given fn is-[1/3,1]

Q4.Differentiate,
so cosx-b<0,as the fn is decreasing.

3.-6

23
qwerty ·

-1\leq sin3x\leq 1

\Rightarrow 1\geq - sin3x\geq -1

add 2

\Rightarrow 3\geq 2- sin3x\geq 1

take reciprcal
\Rightarrow \frac{1}{3}\leq \frac{1}{2- sin3x }\leq 1

23
qwerty ·

Q3)
let, f'(1)= a ,f''(2)=b,f'''(3)=c

f(x)=x^{3}+ax^{2}+bx+c

\Rightarrow f'(x)=3x^{2}+2ax+b...............(1)

\Rightarrow f''(x)=6x+2a...............(2)

\Rightarrow f'''(x)=6...............(3)

\Rightarrow f'''(3)=6=c

also , from 2 , and from 1 ,

\Rightarrow f''(2)=b=12+2a.........(4)

f'(1)=a=3+2a+b

\Rightarrow a+b=-3......(5)

from 4,5
b=2, a= - 5

so

f(x)=x^{3}-5x^{2}+2x+6

f(2)-f(1) = (8 - 20 + 10 ) - ( 1 - 5 + 2 + 6 )
=-6

23
qwerty ·

Q2 ->
not sure but there are 2 methods ,

odd \;function \Rightarrow f(x)+f(-x)=0

also , f(x)=f(x+2).......(1)

so,f(4)+f(-4)=0

f(4)+f(-4+2)=0 ......(from1)

f(4)+f(-4+2+2)=0 ......(from1)

f(4)+f(-4+2+2+2)=0 ......(from1)

f(4)+f(-4+2+2+2+2)=0 ......(from1)

\Rightarrow ,f(4)+f(4)=0

\Rightarrow ,f(4)=0

OR,

since no other specific condition is attached to the function , we can take it as any standard odd function with period = 2

eg: f(x)=sin(\pi x)
is an odd function wid period 2 , defined for all x ,

and clearly f(4) = 0

1
cute_cat ·

thank you guys....

but i din understand the fourth one....

1
cute_cat ·

hey plzz explain the fourth one..

23
qwerty ·

f(x) = sinx - bx+ c

f'(x) = cosx - b

for function to be always decreasing

f'(x) < 0

this cosx < b

thus b must be gr8er than the gr8est value of cosx

hence b > 1

1
cute_cat ·

okay..thanks...

Your Answer