writing numerator as (eax+1) - (ebx+1) then dividing the integral into two parts ,
I = 0∫∞ dxx(ebx+1) - 0∫∞ dxx(eax+1)
now let f(a) = 0∫∞ dxx(eax+1)
f '(a)= 0∫∞ - eax .x .dxx(eax+1)2 = 1a0∫∞ a.eaxdx(eax+1)2
f '(a) = -1a
f(a) = - ln (a) +c
now I = f(b) - f(a) = ln ab