\hspace{-16}$For $\mathbf{a\;,b>0}$. Evaluate the Integral\\\\ $\mathbf{\int_{0}^{\infty}\frac{e^{ax}-e^{bx}}{x.(e^{ax}+1).(e^{bx}+1)}dx}$
-
UP 0 DOWN 0 0 2
2 Answers
Aditya Bhutra
·2012-03-11 22:17:16
writing numerator as (eax+1) - (ebx+1) then dividing the integral into two parts ,
I = 0∫∞ dxx(ebx+1) - 0∫∞ dxx(eax+1)
now let f(a) = 0∫∞ dxx(eax+1)
f '(a)= 0∫∞ - eax .x .dxx(eax+1)2 = 1a0∫∞ a.eaxdx(eax+1)2
f '(a) = -1a
f(a) = - ln (a) +c
now I = f(b) - f(a) = ln ab
man111 singh
·2012-03-12 03:00:00
Very Nice Aditiya.
Same method used by you in Solving \hspace{-16}\mathbf{\int\frac{1}{(x^2+a^2)^2}dx} in goiit.com