Definite Integration

1) Solve

2) Solve

8 Answers

1
shreya ·

2)

apply this property

\int_{-a}^{a}f(x)dx= \int_{0}^{a}(f(x)+f(-x))dx

Now

\int_{-\pi }^{\pi }{(cospx-sinqx)} ^{2} dx = \int_{0}^{\pi }({(cospx-sinqx)}^{2} + (cospx+sinqx)^{2})dx = 2 \int_{0}^{\pi }({(cospx)}^{2} + (sinqx)^{2})dx = 2(\pi)

62
Lokesh Verma ·

Good work shreya :)

1
shreya ·

Thanks...

Can u pls give some hint for the first one.

i m getting no use of applying (a-x)property and so i added the old and new things but still the expression comes difficult...

any suggestions???

62
Lokesh Verma ·

log ab = ??

1
shreya ·

oh!!

i have gone nuts... couldnt see dis!!!

1
shreya ·

1)

first do
\int_{0}^{\pi /4}cot(\pi /4-x)ln(cos(\pi /4+x))dx

(using log property)

Now,

apply (a-x) property

\int_{0}^{a}f(x)dx= \int_{0}^{a}f(a-x)dx

so, u get

\int_{0}^{\pi /4} cot(\pi /4-\pi /4+x)ln(cos(\pi /4+\pi /4-x))dx = \int_{0}^{\pi /4}cotx lnsinx dx

now on evaluating this ans is coming not defined!!!

pls tell if i hve done any mistake!

62
Lokesh Verma ·

\\\int_{0}^{\pi/4}{ln(cos(\pi/4+x))^{cot(\pi/4-x)}}dx \\=\int_{0}^{\pi/4}cot(\pi/4-x)\times{ln(cos(\pi/4+x))}dx \\=\int_{0}^{\pi/4}tan(\pi/4+x)\times{ln(cos(\pi/4+x))}dx

now substitute cos(pi/4+x) = t

\\=\int_{0}^{1/\sqrt{2}}1/t\times{ln(t)}dt

Which comes out to be undefined...

1
shreya ·

yes... i got the same thing.

Your Answer

Close [X]