when x=0 f(x)=3 & lim(x---0) g(f(x))=g(3)=5
when x=3 f(x)=[x]+1=3+1=4 & lim(x--0) g(f(x))=(4)2+1=17
when x=n f(x)=3 & lim(x--0) g(f(x))=5
that is the answer
Hey frnds.... plz help me out here........
i tried to do in a graphical method.... but can't succeed.....
f(x) = [x] + 1 , x≠nπ ; n= 0 , + - 1 , + -2,......
= 3 otherwise
g(x) = x2+1 ; x≠3,x≠0
3 ; x=0
5 ; x=3
then... Lim (x→0) g(f(x)) is.....
plz try it out......
when x=0 f(x)=3 & lim(x---0) g(f(x))=g(3)=5
when x=3 f(x)=[x]+1=3+1=4 & lim(x--0) g(f(x))=(4)2+1=17
when x=n f(x)=3 & lim(x--0) g(f(x))=5
that is the answer
hey nihal..... hw cud u get f(x)= [x] +1 wen x=3??? and y did u consider x=3???
plzzz xplain
i think ans is 1
wen x-->0 (not exactly 0) f(x) = [x]+1
FIRSTLY U SHOULD KNOW THAT U HAVE TO CALCULATE LIMX---0 g(f(x)) and not LIMX---0f(x).. answer is................ LIMX---0 g(f(x)) =