polar coordinates are to help over here!
let x= rcosθ and y=r sinθ, so that x2+y2 =r2 (eqn 1)and tan θ=y/x (eq 2)
thus, from eq (1) d(x2 +y2) = d(r2)
=> x dx +y dy =r dr (eq 3)
from eq 2 d(y/x)= d(tan θ)
=>(x dy -y dx)/x2 =sec2θ dθ
=> x dy - y dx = x2sec2θ dθ = r2 cos2θ sec2θ dθ(eq 4)
from 3 and 4 we have (r dr)/r2 dθ =√{(1-r2 /r2)} i.e. dr/√(1-r2) = dθ
=> sin-1(r) =θ +c
=> r= sin θ +c =>√(x2 +y2) = sin {c+ tan-1(y/x)}
thus we have the results easily !