given Equation is:
x\left(y\frac{d^2y}{dx^2}+\left(\frac{dy}{dx} \right)^2 \right)=3y\frac{dy}{dx}
Now take z=y\frac{dy}{dx}
So,
\frac{dz}{dx}=\left(y\frac{d^2y}{dx^2}+\left(\frac{dy}{dx} \right)^2 \right)
Equation now becomes:
x\frac{dz}{dx}=3z
Solving this we get z=kx^3 , and now we substitute back y
We have:
y\frac{dy}{dx}=kx^3
Given y(1)=1 , and y'(1)=1
so we get k=1
Integrating, we obtain:
\frac{y^2}{2}=\frac{x^4}{4}+c
From given conditions c=\frac{1}{4}
y^2(2)=\frac{17}{2}