Q What is the solution for the differential equation
ydx+(x+x2y)dy=0 ?
-
UP 0 DOWN 0 0 9
9 Answers
Q2) If y=(x +√1+x2)n,then (1+x2)d2y/dx2 +xdy/dx is? plz explain the sol. also
dy/dx= 1+ x/√1+x2 = y/√1+x2
taking derivative,
d2y/dx2= (dy/dx)/√1+x2 - yx/(1+x2)3/2
d2y/dx2= y/(1+x2) - yx/(1+x2)3/2
also,
yx/(1+x2)3/2 = dy/dx. x/(1+x2)
so
d2y/dx2= y/(1+x2) - dy/dx x/(1+x2)
thus, d2y/dx2(1+x2) = y-xdy/dx
thus d2y/dx2(1+x2) + xdy/dx = y
Old question.. check solution below..
this is for 1st just put 1/x = t u will get (-1/x2)dx = dt now it becomes simple solve further :)
y = {x+√1+x2}n
dy/dx= n{x+ √1+x2}n-1 {1+ x/ √1+x2 }
dy/dx = ny/√1+x2
taking derivative,
d2y/dx2= n (dy/dx)/√1+x2 - n yx/(1+x2)3/2
d2y/dx2= n2y/(1+x2) - nyx/(1+x2)3/2
also,
nyx/(1+x2)3/2 = dy/dx. x/(1+x2)
so
d2y/dx2= n2y/(1+x2) - dy/dx x/(1+x2)
thus, d2y/dx2(1+x2) = n2y-xdy/dx
thus d2y/dx2(1+x2) + xdy/dx = n2y
Check if i have made any calculation mistake......